村里开起“议事会”:“村BA”火了,下一步咋干?******
新时代新征程新伟业|村里开起“议事会”:“村BA”火了,下一步咋干?
新华社贵阳11月25日电题:村里开起“议事会”:“村BA”火了,下一步咋干?
新华社记者蒋成
“希望‘村BA’能实实在在地带动村子发展”“能不能开好赛事,同时也做点青年培训”……初冬时节,天气转寒,贵州省黔东南苗族侗族自治州台江县台盘村村委会会议室里的讨论气氛却非常热烈。
11月16日一大早,台盘村迎来一批特殊的客人——学习贯彻党的二十大精神贵州省委宣讲团。上午10点,宣讲会准时开始,20多位村民代表和宣讲团成员面对面直接交流。
会议室外的村委会大院,围着一处宽阔的篮球场。“现场亲眼看过‘村BA’的球场,火热的篮球征战场面还历历在目啊。”贵州省委宣讲团成员、省委宣传部常务副部长谢念以此为话头开场。
台盘村是一个苗族村寨,全村272户1186人,92%是苗族。今年夏天,由当地村民举办的乡村篮球赛由于观众氛围异常火热,引起网络关注,被网友亲切地称为“村BA”。
“2020年,台盘村71户294人贫困人口全部脱贫。如今,台盘村又迈出了乡村振兴的新步伐。我们今天就一起从党的二十大报告里找一找咱村未来发展的‘指南针’。”谢念结合入村所见,将报告中与台盘村息息相关的内容进行了逐条阐释,“‘促进群众体育和竞技体育全面发展’‘全面推进乡村振兴’‘统筹乡村基础设施和公共服务布局’……报告里这些重要部署,就是贵州省、台江县、台盘村发展的新思路、新契机!”
村民们听得聚精会神,而当宣讲团讲到“如何将党的二十大精神贯彻落实到台盘村”时,大家讨论的热情高涨。
今年38岁的村民岑江龙是台盘村篮球协会会长,也是乡村篮球赛的组织者之一。听了宣讲,岑江龙深有感触地说:“我们村有浓厚的体育文化,这些年一直举办乡村篮球赛,下一步咱们怎么能把体育做成突破口让村子富起来?”
针对这个问题,一同前来宣讲的台江县委书记陈震接过话茬。他说,近些年,台盘村依托乡土体育文化和少数民族文化,加强体育与旅游的融合发展,是一条很好的路子。现在台盘村的“村BA”就是一块好招牌,今后台盘村可以继续办好篮球赛事,发展休闲旅游,也可以探索青少年篮球研学、培训等,带动周边餐饮、住宿产业发展,让老百姓的腰包鼓起来。
感受到交流的坦诚氛围,60岁的村民李正奎也讲出自己的担忧和期盼。“村BA”火起来以后,游客一下子增加了,但村里还没有像样的民宿、宾馆,基础设施也不健全。李正奎说:“希望‘村BA’能实实在在地带动村子发展,把绿化、亮化搞一搞,开几家具有咱们苗族风情的民宿,让游客有个休息的地方。”
在篮球场附近开饭店的杨斌也有自己的盘算。今年七八月份举办“村BA”的那段时间,杨斌店里的生意非常好,但是比赛结束后就没了客人。“现在一年到头只能做两个月的热闹生意,比赛能不能长期办?这样我们开饭店也有固定客源。”杨斌说。
对村民提出的意见和想法,宣讲团成员和当地干部仔细记录,逐一进行解答。
“比赛火热起来以后,有很多问题应该提上日程。党的二十大提出,统筹乡村基础设施和公共服务布局,建设宜居宜业和美乡村。县里给我们村定了发展的方向,就是全力打造以‘村BA’为核心的农文旅体融合示范区,让和美乡村的目标更加清晰。”台盘村驻村第一书记张德说。
对村民关心的普遍性问题,宣讲中也给予了回应。“比赛火爆也暴露出球场观众席、卫生间、停车场等不足的短板。咱台盘村先后召开4次村民代表大会进行讨论。根据村民意见,篮球场基本保持原味呈现,只在安全性、舒适性上做了加法。”张德边说边打开手边的工作手册,把下一步争取申办贵州省乡村篮球赛决赛,以及村里将发展枇杷、金秋梨、黄牛等产业的计划等向村民代表和盘托出。
他认真细致的回答换来在场村民的频频点头和阵阵掌声。近两个小时的宣讲会在愉快的氛围中结束,一些村民不愿离去,继续与村干部畅谈着台盘村的未来。
临近中午,天气更晴,球场上洒满阳光。从村委会会议室望出去,刚改扩建完成的“村BA”篮球场面貌焕然一新,更衣室、卫生间、沐浴室、会客间一应俱全……这一切仿佛正在等待着一场规模更加盛大的赛事到来。(新华网)
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.